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Abstract
SU(1, 1) is considered as the automorphism group of the Heisenberg algebra
H . The basis in the Hilbert space K of functions on H on which the irreducible
representations of the group are realized is explicitly constructed. From group
theoretical considerations summation formulae for the product of two, three
and four hypergeometric functions are derived.

PACS number: 0220Q

1. Introduction

Investigating the properties of manifolds by means of the symmetries they admit has a long
history. Non-commutative geometries have become the subject of similar studies in recent
decades. For example, there exists an extensive literature on the q-deformed groups Eq(2)
and SUq(2), which are the automorphism groups of the quantum plane zz∗ = qz∗z and the
quantum sphere respectively [1]. Using group theoretical methods the invariant distance and
the Green functions have also been written in these deformed spaces [2].

In recent work we started to analyse the non-commutative space [z, z∗] = 1 (i.e. the space
generated by the Heisenberg algebra) by means of its automorphism groups: we considered
E(2) group transformations in z, z∗ space; and constructed the basis (which are written in terms
of the Kummer functions) in this space where the unitary irreducible representations of E(2)
are realized [3]. This analysis revealed a peculiar connection between the two-dimensional
Euclidean group and the Kummer functions.

In this paper we continue to study the same non-commutative space [z, z∗] = 1, this
time by means of the other admissible automorphism group SU(1, 1). Our basic motivation
is to derive new summation formulae for the hypergeometric functions in general and Jacobi
functions in particular. The procedure also gives new group theoretical interpretations to the
already known formulae.

In section 2 we define SU(1, 1) in the Heisenberg algebra H and construct the unitary
representations of the group in the Hilbert space X where H is realized.
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In section 3 we classify the invariant subspaces in the space of the bounded functions on
H where the irreducible representations of SU(1, 1) are realized.

In section 4 we show that in the Hilbert space K of the square integrable functions only
the principal series is unitary. We construct the orthonormal basis in K , which can be written
in terms of the Jacobi functions.

Section 5 is devoted to the derivation of summation formulae involving products of two,
three and four hypergeometric functions.

In section 6 explicit examples are given.

2. Weyl representations of SU (1, 1)

The one-dimensional Heisenberg algebra H is the three-dimensional vector space with the
basis elements {z, z∗, 1} and the bilinear antisymmetric product

[z, z∗] = 1. (1)

The ∗-representation of H in the suitable dense subspace of the Hilbert space X with the
complete orthonormal basis {|n〉}, n = 0, 1, 2, . . . , is given by

z|n〉 = √
n|n − 1〉 z∗|n〉 =

√
n + 1|n + 1〉. (2)

Let us represent the pseudo-unitary group SU(1, 1) in the vector space H :

g

(
z

z∗

)
=
(
a b

b a

)(
z

z∗

)
. (3)

Because

aa − bb = 1 (4)

the transformations (3) preserve the commutation relation

[gz, gz∗] = [z, z∗]. (5)

Therefore

gz = U(g)zU−1(g) gz∗ = U(g)z∗U−1(g) (6)

where U(g) is the unitary representation of SU(1, 1) in X:

U(g1)U(g2) = U(g1g2) U ∗(g) = U−1(g) = U(g−1). (7)

The Cartan decomposition for the group reads

g = k(φ)h(α)k(ψ) (8)

where

k(ψ) =
(

e
iψ
2 0

0 e−i ψ2

)
h(α) =

(
cosh α

2 sinh α
2

sinh α
2 cosh α

2

)
. (9)

For the subgroup k(ψ) we have

U(k(ψ))|n〉 = e−i nψ2 |n〉. (10)

Let us choose the following realizations for z, z∗ and X:

z = 1√
2

(
x +

d

dx

)
z∗ = 1√

2

(
x − d

dx

)
(11)

〈x|n〉 = �n(x) �n(x) =
√

e−x2

2nn!
√
π
Hn(x) (12)
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where Hn is the Hermite polynomial. From

h(α)z = 1√
2

(
xe

α
2 + e− α

2
d

dx

)
(13)

and ∫ ∞

−∞
dx �m(x)�n(x) = δnm (14)

we obtain

U(h(α))�m(x) = e
α
4 �m(e

α
2 x). (15)

Matrix elements of U(h(α)) in the basis {|n〉} read

Umn(h) ≡ 〈m|U(h(α))|n〉 = e
α
4

∫ ∞

−∞
dx �m(x)�n(e

α
2 x). (16)

Evaluating this integral we obtain

Umn(h) = 2
m−n

2

( n−m
2 )!

√
n! sinhn−m α

2

m! coshn+m+1 α
2

F

(
−m

2
,

1 − m

2
; 1 +

n − m

2
; − sinh2 α

2

)
(17)

if n � m and n + m is even and

Umn(h) = 0 (18)

if n + m is odd. For m � n one has to replace m, n and α in the above formulae by n, m and
−α, respectively. We can express (17) through the Jacobi polynomial [5]:

U2m2n(h) =
√
m!�(n + 1/2)

n!�(m + 1/2)

sinhn−m α
2

coshn+m+1/2 α
2

P
(n−m,− 1

2 −n−m)
m (cosh α) (19)

U2m+12n+1(h) =
√
m!�(n + 3/2)

n!�(m + 3/2)

sinhn−m α
2

coshn+m+3/2 α
2

P
(n−m,− 3

2 −n−m)
m (cosh α). (20)

3. Irreducible representations of SU (1, 1) in H

The formula

T (g)F (z) = F(gz) (21)

defines the representation of SU(1, 1) in the space K0 of bounded operators in the Hilbert
space X representable as the finite sums

F =
∑

(fn(ζ )z
n + z∗nf−n(ζ )). (22)

Here fn(ζ ) are functions of the self-adjoint operator ζ = z∗z. Using (6) we can rewrite (21)
in the form

T (g)F (z) = U(g)F (z)U ∗(g). (23)

With the one-parameter subgroups g1 = h(ε), g2 = k(π2 )h(ε)k(−π
2 ) and g3 = k(ε) of

SU(1, 1) we associate the linear operators Ek : K0 → K0

Ek(F ) = lim
ε→0

1

ε
(T (gk)F − F) (24)

with the limit being taken in the strong-operator topology. Inserting (23) into (24) we obtain
(with H± = −E1 ∓ iE2, H = iE3)

H−(F ) = 1
2 [F, z2] H+(F ) = 1

2 [z∗2, F ] H(F) = 1
2 [ζ, F ] (25)
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which implies the Lie algebra of SU(1, 1)

[H+, H−] = 2H [H,H±] = ±H±. (26)

The irreducible representations labelled by the pair (τ, ε), τ ∈ C and ε = 0, 1
2 , are given by

the formulae [4]

H−D
(τ,ε)
k = −(k + τ + ε)D

(τ,ε)
k−1 (27)

H+D
(τ,ε)
k = (k − τ + ε)D

(τ,ε)
k+1 (28)

HD
(τ,ε)
k = (k + ε)D

(τ,ε)
k . (29)

Equations (25) and (29) imply

D
(τ,ε)
k = z∗2(k+ε)f

(τ,ε)
k (ζ ) (30)

for k � 0 and

D
(τ,ε)
k = f

(τ,ε)
k (ζ )z−2(k+ε) (31)

for k < 0. By substituting (30) in (27) and (28) with

f
(τ,ε)
k (ζ ) =

∞∑
n=0

(−)n2n+k+ε

n!
Cknz

∗nzn (32)

we obtain the recurrence relations

nCkn−1 +
k + ε + τ

2k + 2ε + n − 1
Ck−1n − (2k + 2ε + n)Ckn = 0 (33)

Ckn+1 − Ckn+2 − (k + ε − τ)Ck+1n = 0 (34)

which are solved by

Ckn = �(1 + τ + ε + k + n)

�(1 + 2ε + 2k + n)
. (35)

Using

z∗nzn = ζ(ζ − 1) · · · (ζ − n + 1) (36)

for k � 0 we obtain

f
(τ,ε)
k (ζ ) = (−2)k

′ �(1 + τ + k′)
�(1 + 2k′)

F (−ζ, 1 + τ + k′; 1 + 2k′; 2) (37)

or

f
(τ,ε)
k (ζ ) = (−2)k

′
(−)ζ

ζ !�(1 + τ + k′)
(ζ + 2k′)!

P
(τ−k′−ζ,2k′)
ζ (3) (38)

where k′ = k + ε. The functions f (τ,ε)
k for k < 0 are shown to be defined from the expression

f
(τ,ε)
k (ζ ) = f

(τ,−ε)
−k (ζ ). (39)

From (27)–(29) we conclude that SU(1, 1) admits the following irreducible representations:

(i) T(τ,ε) : (τ + ε) ∈ Z

(ii) T ±
(τ,ε) : (τ + ε) ∈ Z, τ − ε < 0; that is, τ = − 1

2 ,−1,− 3
2 , . . .

(iii) T 0
(τ,ε) : (τ + ε) ∈ Z, τ − ε � 0; that is, τ = 0, 1

2 , 1, 3
2 , . . . .

The corresponding invariant subspaces are:

(i) V(τ,ε) generated by {D(τ,ε)
k }∞k=−∞

(ii) V +
(τ,ε) and V −

(τ,ε) generated by {D(τ,ε)
k }τ−ε

k=−∞ and {D(τ,ε)
k }∞k=−τ−ε

(iii) V 0
(τ,ε) generated by {D(τ,ε)

k }τ−ε
k=−τ−ε .
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4. Unitary irreducible representations of SU (1, 1) in H

We can define the norm in the subspace of K0 with fn(ζ ) in (22), being the functions with
finite support in Spect(ζ ) = {0, 1, 2, . . .}, as

||F || =
√

tr(F ∗F). (40)

Completion of this subspace leads to the Hilbert space K of the square integrable functions in
the linear space H with the scalar product

(F,G) = tr(F ∗G). (41)

Using (23), the unitarity of U(g) and the property of the trace, we conclude that the
representation T (g) in K is unitary. Equation (25) implies the real structure in the Lie algebra

H ∗
± = −H∓ H ∗ = H. (42)

To investigate the unitarity of the irreducible representations in the Hilbert space K classified
in the previous section we consider the orthogonality condition for the basis elements D(τ,ε)

k .
Using (2) and (30) we obtain

(D
(τ,ε)
k ,D(τ ′,ε′)

m ) = δmkδεε′

∞∑
n=0

(n + 2k + 2ε)!

n!
f
(τ,ε)
k (−n)f

(τ ′,ε)
k (−n). (43)

Putting

s = 1 − e−t λ = 1 + 2(k + ε) + µ (44)

in the formula [6]

∞∑
n=0

�(n + λ)

n!�(λ)
snF (−n, a; λ; 2)F (−n, b; λ; 2)

= (1 − s)a+b−λ(1 + s)−a−bF

(
a, b; λ; 4s

(1 + s)2

)
(45)

and taking first the limit µ → +0 and then t → ∞ we obtain for τ = − 1
2 + iρ, ρ ∈ R, the

orthogonality relations(
D

(− 1
2 +iρ,ε)

k ,D
(− 1

2 +iρ ′,ε′)
m

)
= δmkδεε′δ(ρ − ρ ′). (46)

In the derivation of the above relation we used

F(a, b; c; 1) = �(c)�(c − a − b)

�(c − a)�(c − b)
(47)

and the representation

lim
t→∞

e−izt

z + i0
= −2π iδ(z) (48)

for the Dirac delta function. For other values of τ there is no orthogonality condition. Thus in
K only the representation T(τ,ε) with τ = − 1

2 + iρ of section 3, which is the principal series,
is unitary.
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5. The addition theorems

(i) Restriction of (21) on the subspace V(τ,ε) reads

T (g)D
(τ,ε)
k =

∞∑
n=−∞

t
(τ,ε)
nk (g)D(τ,ε)

n (49)

or

U(g)D
(τ,ε)
k U ∗(g) =

∞∑
n=−∞

t
(τ,ε)
nk (g)D(τ,ε)

n (50)

where

t
(τ,ε)
nk (g) = e−in′φ−ik′ψ �(1 + τ − k′) sinhn

′−kpr α
2

(n′ − k′)!�(1 + τ − n′) coshk
′+n′ α

2

×F
(
−τ − k′, 1 + τ − k′; 1 + n′ − k′; − sinh2 α

2

)
(51)

with n′ = n + ε, k′ = k + ε the matrix elements of the irreducible representations which are
valid for n � k. For n < k one has to replace n and k on the right-hand side by −n and −k

respectively.

(ii) Restriction of (21) on the subspaces V +
(τ,ε) and V −

(τ,ε) gives the following addition theorems:

U(g)D
(τ,ε)
k U ∗(g) =

τ−ε∑
n=−∞

t
(τ,ε)
nk (g)D(τ,ε)

n (52)

and

U(g)D
(τ,ε)
k U ∗(g) =

∞∑
n=−τ−ε

t
(τ,ε)
nk (g)D(τ,ε)

n . (53)

(iii) On the subspaces V 0
(τ,ε) the addition theorem reads

U(g)D
(τ,ε)
k U ∗(g) =

τ−ε∑
n=−τ−ε

t
(τ,ε)
nk (g)D(τ,ε)

n . (54)

Sandwiching both sides of (50) and (52)–(54) between the states 〈l| and |s〉 we obtain
∞∑

m,t=0

Ulm(g)Ust (g)(D
(τ,ε)
k )mt =

∑
n

t
(τ,ε)
nk (g)(D(τ,ε)

n )ls (55)

where

(D
(τ,ε)
k )mt = (−)k

′+t2k
′
√

t!

m!
�(1 + τ + k′)P (τ−k′−t,2k′)

t (3)δm,t+2k′ (56)

for k � 0 and

(D
(τ,ε)
k )mt = (D

(τ,−ε)
−k )tm (57)

for k < 0. Due to the Kronecker function in (56) the one summation from both sides of (55) can
be lifted. Equation (55) gives the summation formula for the product of three hypergeometric
functions (the one in D(τ,ε)

k is the Jacobi function with the constant argument (56)) through the
matrix elements of irreducible representations of SU(1, 1).
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Multiplying (50) and (52)–(54) by U(g) from the right and sandwiching them between
the states 〈l| and |s〉 we obtain another summation formula

∞∑
m=0

Ulm(g)(D
(τ,ε)
k )ms =

∞∑
m=0

∑
n

t
(τ,ε)
nk (g)(D(τ,ε)

n )lmUms(g). (58)

Multiplying (50) and (52)–(54) by U ∗(g) and U(g) from the left and right respectively and
sandwiching them between the states 〈l| and |s〉 we obtain

(D
(τ,ε)
k )ls =

∞∑
m,t=0

∑
n

t
(τ,ε)
kn (g)Uts(g)Uml(g)(D

(τ,ε)
n )mt (59)

which is the summation formula for the product of four hypergeometric functions.

6. Examples

It is clear that (55), (58) and (59) provide many summation formulae involving the product
of hypergeometric functions. In this section, to give an idea about the explicit forms of these
formulae, we give one simple example for each of them.

For the sake of simplicity we restrict our examples to the case (iii) with k = ε = 0 and
g = h.

(A) The explicit form of (55) with l = s + 2r is
∞∑
t=0

(−)tP
(τ−t,0)
t (3)Us+2rt (h)Ust (h) = 0 (60)

if f ∈ [−τ, τ ] and
∞∑
t=0

(−)tP
(τ−t,0)
t (3)Us+2r,t (h)Ust (h) = (D(τ,0)

r )s+2r,s

(τ − |r|)! P−|r|
τ (cosh α) (61)

if f ∈ [−τ, τ ]. Here we used

t
(τ,0)
n0 (h) = τ !

(τ − |n|)!P
−|n|
τ (cosh α) (62)

where Pµ
τ (x) is the Legendre function [6]. For s = 0 and r � 0 the above expression becomes

1√
cosh α

2

∞∑
t=0

√
�(t + 1

2 )

t!
√
π

P
(τ−2t,0)
2t (3) tanht

(α
2

)
U2r,2t (h) = 2r (τ + r)!

(2r)!(τ − r)!
P−r
τ (cosh α) (63)

which for r = 0 reads

1√
π cosh α

2

∞∑
t=0

�(t + 1
2 )

t!
P

(τ−2t,0)
2t (3) tanh2t

(α
2

)
= Pτ (cosh α). (64)

(B) The explicit form of (58) is

(D
(τ,0)
0 )ssUls(h) =

min(τ,[l])∑
t=−τ

(D(τ,0)
n )l,l−2nτ !

(τ − |n|)! P−|n|
τ (cosh α)Ul−2n,s(h) (65)

where [l] is l
2 if l is even and l−1

2 if l is odd. For s, l = 0 we have

1 =
τ∑

n=0

(−)n!

(n!)2

(τ + n)!

(τ − n)!
tanh2n α

2
F
(
−τ, 1 + τ ; 1 + n; − sinh2 α

2

)
. (66)
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(C) The explicit form of (59) is
∞∑

m=max(0,2n)

τ∑
n=−τ

(D(τ,0)
n )m,m−2nτ !

(D
(τ,0)
0 )ss(τ − |n|)!

P−|n|
τ (cosh α)Um−2ns(h)Uml(h) = δsl (67)

which for τ = 0 defines the unitarity condition for U(h) or the summation formula for the
product of two Jacobi functions:

∞∑
m=0

Ums(h)Uml(h) = δsl . (68)
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